
CSC 493 – SENIOR PROJECTS

Wonder Backup
Final Report

Sean Davis
12/7/10

This document contains the project reports from the beginning of the semester through
completion. This includes up-to-date information as well as the final YouTube video, in HD.
Project updates can be found at http://wonderbackup.sourceforge.net.

http://wonderbackup.sourceforge.net/

Table of Contents
Application Development Section ..3

Project Concept Proposal ...3
Inspiration ..5
Vision and Scope ..5
Software Requirements Specifications ..6

System Design and Architecture..9
Implementation...13
Known Bugs and Other Issues in Wonder Backup 1.0 “Stable One”.......................................14
Preliminary Test Plan and Preliminary Test Cases ...15

Test Plan...15
Test Cases...16

Software Demos..17
About the Author...18

Executive Section...19

2

Application Development Section

Project Concept Proposal

• Purpose: Wonder Backup is an open source, Python-powered, operating system
independent backup solution for use in scenarios from end-users to enterprise solutions.
Wonder Backup is licensed under the GNU Public License. # Modified 12/7/10

◦ Context: The context for this program is to fill a need for a free backup solution for
any user. Developed in Python, this program will be easily extensible or adjustable
for any in-house enterprise solution.

◦ Goals: This project aims to develop a Python-powered backup solution that can be
used in any operating system that can run Python, including modern distributions of
Linux, Windows, and Mac OS X.

◦ Audience: The intended audience is home users, system administrators, and technical
service centers. The program will be able to be controlled via a graphical user
interface, command line, or through an answer file. # Modified 10/18/10

◦ Functionality: Given that the program has a number of interface options; it will be
functionally usable by anyone. The availability to customize settings using an answer
file allows technical users to create precompiled Linux recovery solutions. Lastly,
backups can be made to any external source, whether it is an external hard drive, flash
media, or a Windows network share. # Fixed Typographical Error 10/18/10

◦ Milieu: # Alphabetized and Added New Content 10/18/10

▪ Amanda Open Source Backup, http://amanda.zmanda.com/

• This program is for enterprise solutions. It provides backing up to a central
server by a server installation and client web interface.

• Developed in C and Perl.

▪ BackupPC, http://backuppc.sourceforge.net/

• This program is for enterprise solutions. It provides backing up to a central
server by separate client and server installations.

• Limitations include the inability to backup to locally available storage, and no
documented support for Mac OS X.

• Developed in C++.

▪ FBackup, http://www.fbackup.com/

• This very respectable backup program has a lot of power for a great price:
free. It supports only Windows, but allows for free usage with any user, home
or commercial. It does automatic backups, compression, network backups,
removable media backups, just about everything.

• Limitations exist only in the fact that this software only runs in Windows.

3

http://www.fbackup.com/
http://backuppc.sourceforge.net/
http://amanda.zmanda.com/

◦ Novelty: Wonder Backup will be built in Python and will be self-contained. It
requires no server installation and does not necessarily need to be run in the native
Operating System being backed up.

• Resources: # Added New Content 10/26/10

◦ Python Programming Language 2.6+

▪ http://www.python.org/

◦ Samba Windows Interoperability Suite

▪ http://www.samba.org/

◦ wxWidgets

▪ http://www.wxwidgets.org/

◦ wxPython

▪ http://www.wxpython.org/

• Challenges:

◦ Python versioning on Unix systems with Python pre-installed.

◦ Graphical User Interface # Modified 10/18/10

◦ Incremental Backups

◦ Support for older operating systems

◦ Multiple directory selection in different interfaces

◦ Packaging software for use with Windows

• Measures:

◦ Software properly runs on each tested Operating System.

◦ Command-Line interface is functional.

◦ Graphical user interface is functional. # Modified 10/18/10

◦ Software packages operate as desired.

• Future Extensions:

◦ Encryption

◦ Service, background backups

4

http://www.wxpython.org/
http://www.wxwidgets.org/
http://www.samba.org/
http://www.python.org/

Inspiration

• Motivation: This project is important to me because I have not found an equivalent,
Python-based backup solution. Python is my language of choice and I would like there to
be an option to have a fully customizable and extensible backup program that is fully
open source and freely available to anyone who seeks a better backup program.

• Profession: This project will help my professional growth through the creation of a
program that has no current alternative. Filling this void in the software universe will
begin to publicize my name as a serious programmer. Combined with the experience I
hope to earn by approaching this project through a professional business model, this
project will certainly further my professional growth.

Vision and Scope

Wonder Backup is a project which seeks to bring a very free and easily customizable
backup solution into the software world. Once complete, the software will offer a range of
backup options and will be freely usable and modifiable for any individual or organization.
Usable for regular backups, or even as a recovery solution, users will delight in the options
presented by the software with the ability to use the software with any semi-modern hardware.

Given the time constraints of this semester, the scope of this project needn’t be
significantly reduced. Within reasonable scope, this project will have a working software base by
the end of the semester. All functionality of the software will be available, though perhaps only
by a command line interface. The most difficult part of this project will be the single interface for
all systems. As previously considered, this may take form as a web interface, but may also result
in other possibilities. Guaranteed to be outside of scope will be a Python 3.x version, though this
can be expected after release.

5

Software Requirements Specifications

1. Traverse a directory structure

◦ Evaluation Method: List files in deeper subdirectories.

◦ Dependencies: None.

◦ Priority: High

2. Copy a single file

◦ Evaluation Method: Copy a file from one location to another.

◦ Dependencies: None.

◦ Priority: High

3. Copy multiple files

◦ Evaluation Method: Copy multiple files from one location to another.

◦ Dependencies:

▪ 02. Ability to copy a single file

◦ Priority: High

4. Exclude specific files, file types from copy

◦ Evaluation Method: Define files and file types to not be copied, then attempt copy

◦ Dependencies:

▪ 03. Copy multiple files

◦ Priority: Middle

5. Backup directory structure

◦ Evaluation Method: Copy directory structure from one location to another.

◦ Dependencies:

▪ 01. Traverse a directory structure

▪ 03. Copy multiple files

▪ 04. Exclude specific files, file types from copy

◦ Priority: High

6. Pass user credentials and connect to SAMBA (Windows) network shares

◦ Evaluation Method: Successfully connect to and read files on SAMBA share

◦ Dependencies:

▪ 01. Traverse directory structure

6

◦ Priority: Middle

7. Check for read/write access on SAMBA shares

◦ Evaluation Method: Successfully get directory permissions

◦ Dependencies:

▪ 06. Pass user credentials and connect to SAMBA (Windows) network shares

◦ Priority: Middle

8. Mount filesystems and/or SAMBA shares

◦ Evaluation Method: View files on mounted filesystems/shares.

◦ Dependencies:

▪ 01. Traverse directory structure

▪ 06. Pass user credentials and connect to SAMBA (Windows) network shares

◦ Priority: Middle

9. Command Line Interface

◦ Evaluation Method: Perform successful backup using command line interface.

◦ Dependencies:

▪ 05. Backup directory structure

▪ 08. Mount filesystems and/or SAMBA shares

◦ Priority: Middle

10. Multiple Environment Interface

◦ Evaluation Method: Use same successful backup interface on Windows, Linux, and
Mac OS X.

◦ Dependencies:

▪ 09. Command Line Interface

◦ Priority: Low

11. Get file sizes and modified times

◦ Evaluation Method: Successfully get information about a file

◦ Dependencies: None

◦ Priority: Low

12. Incremental Backups

◦ Evaluation Method: Perform multiple successful backups without unnecessary
rewrites of already backed up data.

7

◦ Dependencies:

▪ 11. Get file sizes and modified times

◦ Priority: If time permits

8

System Design and Architecture
Entire Section Updated 11/14/10
The Wonder Backup project will follow the following model:

• Wonder Backup (Application) which consists of:

◦ Backup Functions which consists of:

▪ timestamp() # Added 11/23/10

• This function returns a string of the current date and time.

▪ getContents(directory)

• This function returns a dictionary of the contents of the given directory.

▪ excludeFiles(files, exclusionPatterns)

• This function checks the list files for anything that may be excluded as defined
by exclusionPatterns. It then returns a new list without any excluded files.

▪ copy(originalFile, newFile)

• This function copies the file originalFile to the location defined by newFile.

▪ getBackupFiles(sourceDirectory, exclusionPatterns)

• This function recursively traverses the directory structure from
sourceDirectory, returning a list of all files that are not excluded by
exclusionPatterns.

▪ makeBackupFolders(sourceDirectory, targetDirectory)

• This function recreates the folder structure of sourceDirectory in
targetDirectory.

▪ targetFilenames(sourceDirectory, targetDirectory, files)

• This function returns a list of absolute locations of the files that will be created
in targetDirectory.

◦ File Functions which consists of:

▪ readableSize(n_bytes)

• This function returns a string of the size defined by n_bytes in its highest
representation, to the second decimal place.

▪ getAttributes(filename)

• This function returns a dictionary of the file filename's size and modification
date.

◦ OS-Specific Functions which consists of:

9

▪ dirString(directory)

• This function returns a directory string from directory in the proper format
according to the host operating system.

▪ detectOS(directory)

• This function returns operating system information for the source directory.
This function can be called without arguments to get information about the
host operating system.

▪ freespace(directory)

• This function returns the amount of freespace available on directory. Correct
information is only retrieved in Linux, so it is disabled for other operating
systems.

▪ getCurrentUser()

• This function returns the string containing the username of the currently
logged-in user.

▪ checkLocation(directory)

• This function checks if directory is an actual location.

▪ getProfilesFolder(sourceDirectory)

• This function returns a string containing the location of the user profiles folder
for the sourceDirectory.

▪ getProfiles(sourceDirectory)

• This function returns a list of profiles found on the given sourceDirectory.

◦ XML Processing Functions which consists of:

▪ readXML(filename)

• This function returns the ElementTree of the XML file.

▪ getLocations(xmldoc, osFamily, osVersion)

• This function returns a dictionary containing the backup locations from
xmldoc for osFamily and osVersion.

▪ getExclusions(xmldoc)

• This function returns a dictionary containing all of the exclusion definitions
from xmldoc.

◦ Command Line Interface Functions which consists of:

▪ Each step of the backup wizard:

• selectBackupType(messages)

10

◦ The first step of the wizard. The user selects the backup type at this step.
The user can select between local, external, and preconfigured backups.

• selectSource(messages, backupType)

◦ The second step of the wizard. At this point, the user enters the location of
the source directory to be backed up. This step is skipped if the user
selected a local backup.

• selectTarget(messages)

◦ The third step of the wizard. The user enters the target directory to store
the backup.

• selectUser(messages, source)

◦ The fourth step of the wizard. The user selects a user to backup from a list
of profiles found on the source directory.

• selectBackupLocations(messages, source, user, locations)

◦ The fifth step of the wizard. The user selects which locations to backup.
The locations available is determined by the operating system foundon the
source directory.

• selectExclusions(messages, exclusions)

◦ The sixth step of the wizard. The user selects exclusions to be applied to
the backup, one at a time.

• startBackup(messages, backupType, sourceDirectory, targetDirectory, user,
backupLocations, exclusions)

◦ The final step of the wizard. At this point, the backup actually occurs.

▪ cliBackup(messages, backupLocations, targetDirectory, exclusionPatterns)

• This function performs the command-line backup of files defined by
backupLocations to targetDirectory, excluding all files that match the patterns
defined by exclusionPatterns.

◦ Graphical User Interface Functions which consists of:

▪ Each tab of the backup wizard:

• Tab_Welcome(parent, messages)

◦ This is the first tab users encounter. It is simply a welcome screen.

• Tab_SelectBackupType(parent, messages)

◦ In this second tab, the user selects the backup type: local, external, or
preconfigured.

• Tab_SelectSourceLocation(parent, messages)

◦ The third tab is used for selected the source location. It does not show up

11

if a local backup type is selected, but it automatically filled in.

• Tab_SelectTargetLocation(parent, messages)

◦ The user selects the target location for the backup in the fourth tab. In
Linux, the amount of free space on the selected location is shown.

• Tab_SelectUser(parent, messages)

◦ The fifth tab contains the user selection. The combobox is automatically
filled when the source location is selected.

• Tab_SelectLocations(parent, messages, start_location, inbetween)

◦ The sixth tab displays the backup location options. Based on the OS
version of the source location, certain options are disabled.

• Tab_SelectExclusions(parent, messages, start_location, inbetween)

◦ The seventh tab is structured much like the sixth. The user selects the file
exclusions to be used.

• Tab_BackupProgress(parent, messages)

◦ In the final tab, one last check is made to determine if all necessary
information has been entered. If so, the backup begins. Otherwise, an
error is displayed and the user cannot continue until this information is
selected.

▪ The interface, WonderGUI().

12

Implementation
Modified December 7, 2010

• README.txt

• ico16.ico and Icon.ico

◦ Actual icons used by the program itself.

• Icon.png

◦ The icon that is seen when viewing the About option in the GUI.

• license.txt

◦ This file contains the GNU Public License version 3.

• localizations.xml

◦ This file contains all the messages, per language for the program.

• Setup.py

◦ This file contains the setup program to compile applications.

• wbBackup.py

◦ This file contains the backup functions.

• wbFile.py

◦ This file contains the file-related functions.

• wbOS.py

◦ This file contains operating-system specific functions.

• wbXML.py

◦ This file contains the functions for processing XML files.

• wbCLI.py

◦ This file contains the functions for the command-line interface.

• wbGUI.py

◦ This file contains the functions for the graphical user interface.

• wbsetup-nsis.nsi

◦ This file contains the settings necessary to create the windows installer.

• wonderbackup.xml

◦ This file contains the information for locations and file exclusions per operating
system.

13

Known Bugs and Other Issues in Wonder Backup 1.0 “Stable One”
• On a 64-bit Mac OS X host, the Python installation must first be set to 32-bit mode.

• On all hosts, preconfigured backups and import/exports are not available at this release,
and hence have been fully disabled..

14

Preliminary Test Plan and Preliminary Test Cases

Test Plan
Purpose

The purpose of Wonder Backup is to perform simple and automated backups given user-
selected constraints using a simple interface that is synonymous across all platforms.
Features to be tested

• Command Line Interface, with and without arguments.

• Graphical User Interface, all functionality

• Storing backup on remote locations

• Importing preconfigured settings

• Exporting configured settings

• Incremental and full backups

Approach
The same approach will be used for all operating systems. The same process will be

followed for each test case. The program will be started, the case tested, and results recorded.
Environmental Needs

• Operating System

◦ Windows XP, 2003, Vista, 2008, 7

◦ Mac OS X 10.5, 10.6

◦ Linux (Ubuntu 10.10 tested)

• Python

◦ Version 2.5+

• wxWidgets

◦ Version 2.8+

• wxPython

◦ Version 2.8+

Schedule
• November 16, 2010

◦ Unit and Integration Testing

• November 23, 2010

◦ Operating System-Specific Testing

• November 30, 2010

15

◦ Forced attempts to crash program.

Acceptance criteria
• Program handles all backup jobs appropriately, without crashing or stalling.

• The proper files are backed up, in the proper location.

• No files are deleted during the backup.

• With incremental backups, updated files are updated on the backup location.

• All features function the same across all platforms.

Test Cases
Updated November 14, 2010

• WB-01: Perform a successful backup with command-line version of Wonder Backup
under Windows, Linux, and Mac.

◦ Steps Involved:

▪ Start program by invoking ‘python wbCLI.py’

▪ Follow steps of backup program, ensuring that the location the backup is made to
is writable.

▪ Check if backup was successful.

◦ Expected Results:

▪ Files that were found in the chosen backup areas will exist in the chosen save
directory, excluding the excluded file types

• WB-02: Successfully run a backup from graphical user interface under Windows, Linux,
and Mac.

◦ Steps Involved:

▪ Start the program by invoking ‘python wbGUI.py’

▪ Follow steps of backup program, ensuring that the location of the backup is made
to is writable.

▪ Check if backup was successful.

◦ Expected Results:

▪ Files that were found in the chosen backup areas will exist in the chosen save
directory, excluding the excluded file types

• WB-03: Package Linux version into AppPackage.

◦ Steps Involved:

▪ Research AppPackages.

16

▪ Gather requirements.

▪ Package the files.

▪ Test on multiple Linux distributions.

◦ Expected Results:

▪ Program runs on any distribution without the installation of dependencies.

• WB-04: Package Mac version into .App file.

◦ Steps Involved:

▪ Research .Apps

▪ Package into .App file

▪ Test the application on multiple Mac installations.

◦ Expected Results:

▪ Program runs on multiple Mac installations.

• WB-05: Package Windows version with portable python installation / Compile into .exe

◦ Steps Involved:

▪ Research portable installations.

▪ Compile into single object.

▪ Test on multiple Windows installations.

◦ Expected Results:

▪ Program runs on multiple Windows installations.

Software Demos
• Demo 1 – Introduction to Wonder Backup (HD)

◦ This demo provides an introduction to the current (beta) build of Wonder Backup.
The demo shows the standard processes involved in successfully performing a
backup, on Windows XP and 7 and Mac OS X.

◦ You can find the video at http://www.youtube.com/watch?v=izDM5MkKT8A. Be
sure to watch the video in HD!

• Final Demo – Introduction to Wonder Backup Version 1.0 (HD)

◦ This demo provides an introduction to the stable build of Wonder Backup. This
demo shows the standard processes involved in successfully performing a backup on
Windows XP and 7, Mac OS X, and Ubuntu 10.10.

◦ HD Video at: http://www.youtube.com/watch?v=zszz_LRAOPQ

17

http://www.youtube.com/watch?v=zszz_LRAOPQ
http://www.youtube.com/watch?v=izDM5MkKT8A

About the Author
Sean Davis is a senior Computer & Information Science major at Berea
College in Berea, KY. Easily the most stubborn Linux user, he has thrown
out his physical Windows partitions in favor of Ubuntu Linux, virtualizing
Windows only for work and testing software. He’ll soon be graduating and
looking for a programming firm (or Linux company) to take him in for his
talents in C++ and Python.

18

Executive Section
To: Dr. Jan Pearce, Project Director

From: Sean Davis

Subject: Wonder Backup

Date: 9/7/2010

Accomplishments: I gathered ideas for the project. I opened the project page for Wonder
Backup at http://wonderbackup.sourceforge.net. I also developed a preliminary project logo and
icon. Lastly, I compiled the project proposal.

Challenges: Thinking of a project name that was yet unclaimed proved to be a difficult
endeavor. Creating the project logo was a tedious process since I used imaging software that I
had never encountered. I did manage to overcome both of these challenges.

Time Spent: 2 hours on logo development, 2 hours on project proposal, 10 minutes on the
Executive Section.

Goals: Meet with Project Director to plan next phase.

To: Dr. Jan Pearce, Project Director

From: Sean Davis

Subject: Wonder Backup

Date: 9/14/2010

Accomplishments: I completed the Vision and Scope and Preliminary Software Requirements
Specifications sections in the Application Development Section.

Challenges: Determining the scope of my project. I feel confident that I should be able to
complete a number of requirements in the short amount of time, so considering all that might be
necessary for the project was challenging and time consuming.

Time Spent: 0.5 hours on Vision and Scope section, 1.5 hours on Preliminary Software
Requirements Specifications section, 10 minutes on the Executive Section.

Goals: I need to properly configure the Mercurial repository on Sourceforge.net, begin code
development, and meet with the Project Director.

19

To: Dr. Jan Pearce, Project Director

From: Sean Davis

Subject: Wonder Backup

Date: 9/21/10

Accomplishments: I reviewed the Software Requirements Specifications and found there to be
no issues. I began code development and properly configured the Mercurial repository on
Sourceforge.net, submitting my first code and documentation.

Challenges: I had written some preliminary code in the summer, but with the recent version
bump to the 2.7 series, it was non-functional. A significant challenge was posed in diagnosing
the problem.

Time Spent: 30 minutes Tuesday on code development. 10 minutes Sunday on reviewing the
SRS and 40 minutes on code development. One hour on code development Tuesday morning.
10 minutes on the Executive section Tuesday morning. Total time spent this week: 2 hours 30
minutes. Total time spent this term: 6 hours 50 minutes

Goals: Review and design a software architecture for the project and continue software
development.

To: Dr. Jan Pearce, Project Director

From: Sean Davis

Subject: Wonder Backup

Date: 9/28/10

Accomplishments: Reviewed code and decided on System Design and Architecture and updated
the Application Development Section accordingly.

Challenges: The greatest challenge posed this week was finding an opportunity to work on this
segment of the project. While I had considered what to include throughout the week, I did not
have an opportunity to follow through until the submission deadline.

Time Spent: Total time spent this week: 1 hour 30 minutes. Total time spent this term: 8 hours
20 minutes.

Goals: Continued development and implementation of the backup program code.

20

To: Dr. Jan Pearce, Project Director
From: Sean Davis

Subject: Wonder Backup

Date: 10/5/10

Accomplishments: Completed requirements for first
working prototype. The program can now successfully backup important file locations to user-
specified locations. This is a significant step towards completion of the project.

Challenges: Challenges this week included importing all parts of the project (which proved to be
unsuccessful, hence the single all_functions.py) and preparing operating system-specific
functions for specific backup locations.

Time Spent: 3 hours dedicated on Sunday, 1 hour on Monday, and an hour Tuesday morning on
code development. Half hour Tuesday morning on document updates. Total time spent this
week: 5.5 hours. Total time spent to date: 13 hours and 15 minutes.

Goals: Continued development and implementation of the backup program code.

To: Dr. Jan Pearce, Project Director

From: Sean Davis

Subject: Wonder Backup

Date: 10/18/10

Accomplishments: Transitioned configuration to XML. Developed an initial graphical user
interface, with proper structure and cross-platform functionality. Reordered code into properly
named files. Made several adjustments to documentation.

Challenges: Challenges this week included learning and structuring XML as well as developing
a graphical user interface with the wxWidgets toolkit.

Time Spent: 3 hours Thursday, 2 Sunday, and 3 Monday on GUI. 1.75 hours Monday on code
fixes and restructuring. 1 hour adjusting documentation as necessary and ten minutes on the
Executive Section. Total time spent these two weeks: 10.75 hours. Total time spent to date: 24
hours.

Goals: Debug inconsistencies, develop a functional GUI, further development. Movement to
alpha/beta status.

21

To: Dr. Jan Pearce, Project Director
From: Sean Davis

Subject: Wonder Backup

Date: 10/26/10

Accomplishments: Transitioned most messages and
dialogs to XML format. Now messages can be defined in one location and be changed in both
the GUI and CLI. Achieved alpha state in command-line interface, allowing for local backups
defined in and XML document, and allowing for file type exclusions. Completed XML reading
capability.

Challenges: The biggest challenge that was presented this week was manipulating the XML
document in order to usable, since there was no documentation. Next, I also had issues with
developing the GUI further, so I put my focus on completed the CLI.

Time Spent: 4 hours Sunday on XML reading functions, 2 hours Sunday on GUI work. 3 hours
Monday on command-line backup functions. 2 hours Tuesday commenting and organizing code.
30 minutes Tuesday on report updates and 10 minutes Tuesday on Executive section. Total time
spent this week: 7 hours, 40 minutes. Total time spent to date: 31 hours, 40 minutes.

Goals: Move remainder of output to XML documents and begin allowing for localization.
Complete GUI, possibly with a wizard similar to the command-line backup progress. Work on
removable device and network detection. Further test and optimize the program.

To: Dr. Jan Pearce, Project Director

From: Sean Davis

Subject: Wonder Backup

Date: 11/2/10

Accomplishments: Finished ported messages to XML format. Now all messages can be defined
from XML document, and localization should be a matter of adding languages to the XML
document. Added OS detection to the GUI program. Added event-handling to make tabs
interoperate.

Challenges: The greatest challenges that were posed this week included improving and adding
functionality to the GUI. Many things are now automated. The one hurdle that still remains is
the backup dialog. Upon finishing that, the GUI program will be complete.

Time Spent: Friday evening: 6 until 10, Saturday evening: 5 until 10, Sunday 2 to 8, and
Monday 7pm to Tuesday 5am. Total time spent this week: 25 hours. Total time spent to date: 56
hours, 40 minutes.

Goals: Complete GUI. Compile wxWidgets on a Mac. Research packaging options for each
operating system. Test the program.

22

To: Dr. Jan Pearce, Project Director
From: Sean Davis

Subject: Wonder Backup

Date: 11/16/10

Accomplishments: Updated all comments and
documentation. Updated file names to a single convention. Completion of the Graphical User
Interface. Optimization of underlying code. Updated Command Line Interface. Performed
initial testing on each Operating System.

Challenges: Progress information on GUI backup. It was simply enough to make a progress bar
for this program, though there was little information on actively updating the progress bar. Other
issues were also associated with the GUI backup progress, and they were ultimately resolved
over time.

Time Spent: 11/2 through 11/9, 30 hours on code development and optimization for all
underlying functions and command line program. 11/10, 2 hours on completion of command
line program and 1 hour on updating of comments and documentation. 11/11, 1 hour on
documentation update. 11/12, 3 hours on GUI code development. 11/13, 3 hours on GUI code
development. 11/14, 2 hours on further updates on documentation and improvement on
documentation appearance, 1.5 hours on development of the Test Plan.

Goals: Continued bug testing (and squashing). Practice video demos, and test screen recording
software for the demos.

To: Dr. Jan Pearce, Project Director

From: Sean Davis

Subject: Wonder Backup

Date: 11/23/10

Accomplishments: Fixed problems associated with running backups in Mac OS X. Added
further error handling and an error log output to the backup location. Produced first video demo
on YouTube.

Challenges: One significant challenge this week was learning how to properly use error
handling. Another challenge was screen capturing and video editing for the video demo.

Time Spent: 2 hours on error-handling within the project. 1.5 hours on screen capturing and
video editing, as well as adding the video to YouTube and annotating the video. Total time spent
this week: 3.5 hours. Total time spent to date: 103 hours, 40 minutes.

Goals: Add final remaining functionality to program: configuration exporting and importing, and
incremental backups. Practice and further enhance video demo. Consider addition of optional
encryption and compression of backups.

23

To: Dr. Jan Pearce, Project Director

From: Sean Davis

Subject: Wonder Backup

Date: 11/30/10

Accomplishments: Integrated incremental backup functionality. Updated feature set of
commandline program to be equivalent with that of the GUI program. Added more safeguards to
the program to prevent crashing.

Challenges: Video updates proved to be difficult this time around. The video editor continued to
have bugs which prevented any updates. Another challenge was innovating more functionality to
prevent program crashes.

Time Spent: 7 hours total on video recording and manipulating. 10 hours total on program
updates. 1 hour on video demos and evaluations. Total time spent this week: 18 hours. Total
time spent to date: 121 hours, 40 minutes.

Goals: Implement final functionality, develop final video, and create the project poster.

To: Dr. Jan Pearce, Project Director

From: Sean Davis

Subject: Wonder Backup

Date: 12/7/10

Accomplishments: Updated all documentation, including comments to match the Python Style
Guidelines. Updated software to stable status. Created Windows installer. Finalized the Video
demos. Completed the Poster. Changed the license to GPL version 3.

Challenges: Creating the poster and building a Windows installer were the most challenging
aspects to this week.

Time Spent: 3 hours on Poster. 6 hours on the video demo, including transcoding and uploading
to YouTube, as well as annotating the video. 2 hours on complete comments and documentation,
including the Executive Section. Total time spent this week: 11 hours. Total time spent to date:
132 hours and 40 minutes.

Goals: Have a successful presentation session.

24

	Application Development Section
	Project Concept Proposal
	Inspiration
	Vision and Scope
	Software Requirements Specifications

	System Design and Architecture
	Implementation
	Known Bugs and Other Issues in Wonder Backup 1.0 “Stable One”
	Preliminary Test Plan and Preliminary Test Cases
	Test Plan
	Test Cases

	Software Demos
	About the Author

	Executive Section

